WSNGE: A Platform for Simulating Complex Wireless Sensor Networks
Supporting Rich Network Visualization and Online Interactivity'

Marios Karagiannis 2, Ioannis Chatzigiannakis > and Jose Rolim >
2 Centre Universitaire d’ Informatique, Geneva, Switzerland. E-mail: {marios.karagiannis, jose.rolim}@unige.ch
3 Research Academic Computer Technology Institute (CTT) and University of Patras, Greece. E-mail: ichatz@cti.gr

Keywords: Wireless Sensor Networks, Multiprotocol simu-
lation, Network Visualization

Abstract

In this paper we describe a new simulation platform for com-
plex wireless sensor networks that operate a collection of dis-
tributed algorithms and network protocols. Simulating such
systems is complicated because of the need to coordinate dif-
ferent network layers and debug protocol stacks, often with
very different interfaces, options, and fidelities. Our platform
(which we call WSNGE) is a flexible and extensible environ-
ment that provides a highly scalable simulator with unique
characteristics. It focuses on user friendliness, providing ev-
ery function in both scriptable and visual way, allowing the
researcher to define simulations and view results in an easy
to use graphical environment. Unlike other solutions, WS-
NGE does not distinguish between different scenario types,
allowing multiple different protocols to run at the same time.
It enables rich online interaction with running simulations,
allowing parameters, topologies or the whole scenario to be
altered at any point in time.

1. INTRODUCTION

A particularly promising and hot research area has been
the design and analysis of wireless sensor networks (WSN),
which has attracted researchers from very different back-
grounds, such as hardware, software, algorithms, and data
structures, as well as researchers from various application ar-
eas. Advancements have been made in the physical hardware
level, embedded software in the sensor devices, systems for
future sensing applications and fundamental research in new
communication and networking paradigms. Although these
research attempts have been conducted in parallel, in most
cases they were also done in isolation, making it difficult to
converge towards a unified global framework. We envision
that future research on wireless sensor networks will exploit
its theoretical and practical dimensions in parallel.

From a practical point of view, a joint approach of con-
ducting research that combines both theory and practice must
overcome considerable difficulties. Still, even if all skills

I'This work has been partially supported by the IST Programme of the Eu-
ropean Union under contract number IST-2005-15964 (AEOLUS) and ICT-
2008-224460 (WISEBED)

from all diverse specialties are acquired, the cost of setting
up and maintaining an experimental facility of significant
size can be very high. Deploying the experimental network
into a realistic environment requires iteratively reprogram-
ming dozens of nodes, positioning them throughout an area
large enough to produce an interesting radio topology, and in-
strumenting them to extract performance data. This may have
contributed to the fact that only few of these networks have
yet been deployed [23, 19, 13].

An alternative to experimenting with actual sensor net-
works in order to validate and evaluate the performance of ap-
plications is software simulation. Simulators provide a num-
ber of advantages over real world deployments, such as, e.g.,
the ability to test a great variety of parameters in protocols
and deployment settings, including repeatable scenarios, iso-
lation of parameters, exploration of a variety of metrics and
ease of development by leaving out all the details of deploy-
ing a real testbed. Currently, a number of simulators have
been developed, most notable examples are ns-2 [14], OM-
NeT++ [15], OPNET Modeler [3], GTNetS [2], YANS [12]
and Shawn [10].

Even though most simulators provide the basic framework
required to simulate a generic wireless network, in the context
of wireless sensor networks, more facilities are required to
produce realistic simulation scenarios that capture real world
uses of these networks. For example, in real world scenarios
it is uncommon for nodes to communicate without restric-
tions inside the network area, but still obstacle modeling and
simulation is absent from most simulators. Even when con-
sidering wireless sensor networks, where several models as-
sume nodes are prone to errors and hardware failures, there is
usually no clearly defined functionality to model failures. We
note that the largest part of the research papers which deal
with such networks, and use simulation as an analysis tool,
make a lot of simplifying assumptions to reduce the overall
simulation complexity, be it in the simulation setup, the sim-
ulation scenarios, or the simulator used itself. Such oversim-
plifications are often required in order to conduct experiments
with a great number of nodes in reasonable time, but most fre-
quently they are imposed by the lack of functionality in the
simulation tools. In this way the credibility of such research
works is weakened. An analytic and meaningful discussion of
common pitfalls and shortcomings in the simulation of wire-
less networks in general is included in [9] and [11].

1.1. Motivation & Our Contribution

In this paper we present WSNGE, a simulation platform,
for the implementation, simulation, and evaluation of com-
plex wireless sensor networks. WSNGE allows the simula-
tion of multiple distributed algorithms that are executed con-
currently on the nodes of the system and that are combined
in order to implement the desired application. It focuses on
providing a rich interface to monitor the execution of the sys-
tem and interact with the system state during the simulation.
The design goals of the WSNGE environment are to allow the
protocol designer to create his own environment, to program
in a natural style, very similar to the style of programming
for the final real-world application, to be of substantial help
to the application designer by providing means to monitor the
execution of the system and to extract detailed statistical in-
formation, to be used both as a tool for experimental analysis
and for demonstration or educational purposes, be easy to ex-
tend or integrate in other systems, to be efficient and easy to
use and, finally, to be able to produce realistic simulation sce-
narios for wireless sensor networks.

Many systems (e.g., ns, Shawn) provide animations of the
simulated system based on system traces extracted during the
simulation. They are only animated visualizers and don’t pro-
vide simulation capabilities. For this purpose WSNGE in-
cludes a GUI that can be used to monitor aspects of the sim-
ulation in real time. This feature is quite important since it
allows to pause the simulation, make changes and resume the
simulation in order to measure the effect of certain events on
the robustness of the algorithm. The protocol designer is able
to interact with the simulation while the experiment is still
ongoing, introducing obstacles, packets, new topologies and
new properties. To the extent of our knowledge, the existing
solutions provide poor or no interaction with running simu-
lations whatsoever. The GUI includes modules for designing
the topology, constructing scenarios and viewing statistics. A
powerful feature of WSNGE is that it provides multiple view-
ports of the same simulation with customizable information
displayed on each, both to avoid clutter and to focus on cer-
tain aspects of the execution, making it an ideal platform for
demonstration or educational purposes.

Another limitation of most of the available systems is that
they offer a generic simulation environment, while our so-
lution focuses on Wireless Sensor Network simulation. WS-
NGE provides a set of tools that make WSN simulation eas-
ier. It also provides WSN specific features like communica-
tion obstacles or battery life by default. We note that very
few simulation platforms exist that are specialized in wireless
sensor networks, most notable examples are AlgoSenSim [1]
and TRAILS [4].

Another primary concern is to provide an open system
that can be used as a scenario editor, online monitoring and
presentation tool for other platforms. To support these func-

Simulator Type | Size (# Nodes) | Visualization
ns-2/NAM Generic 10° Offline
Shawn Generic 100 Offline
OMNeT++ Generic 10% Offline
DAP/ADAPT | Generic 10° Online
WSNGE WSN 10° Online

Table 1. Simulator characteristics

tionalities, WSNGE has a very flexible modular architecture
where components have very low coupling so that they can
be easily removed and replaced by external ones in order to
come up with customized simulation platforms.

The use of WSNGE is rather intuitive and does not distract
the developer from the main task, which is the design, devel-
opment and testing of the algorithm.

2. PREVIOUS WORK

In this section we review four, of what we believe to be
important representatives, software solutions that provide vi-
sualization for network topologies. Each network visualizer
approaches the task with interesting ideas and innovations but
at the same time retains its own philosophy. In Table 1 we at-
tempt to classify these simulators based on their characteris-
tics and capabilities.

2.1. Nam, the VINT Network Animator

NAM’s [8] philosophy is to provide a detailed animation
of the execution of the algorithm in test. It uses the trace
files provided by other simulation environments (such as NS)
to render a fully interactive animated representation of data
flows, connections and network layout. NAM is only an an-
imated visualizer and does not provide any simulation capa-
bilities. It does however include tools for constructing sim-
ulation scenarios and extract them so that external tools can
run them.

By using the time-indexed events from the trace files, NAM
can provide offline re-runs of simulations. Online visualiza-
tion is also possible using UNIX pipes as input. By tak-
ing advantage of the network properties descriptions, NAM
provides its core feature, which is packet animation. Using
graph layout drawing algorithms, it represents the physical
properties, such as latency and bandwidth of links, and an-
imates packets on the edges. The resulting animated graphs
can be interacted with, providing extra information and statis-
tics about their elements (packets, edges, nodes etc.).

Nam’s scenario creation and editing capabilities consist of
the scenario input facility which produces ns scripts for ns to
execute and the usage of Nam as a visualizer during NS’s sce-
nario generation. The thing to note here is that Nam’s visual-
ization capabilities are restricted to relatively small scenarios

(roughly up to 100 nodes) while support for large network
topologies scenarios is future work.

2.2. Shawn

Shawn [10, 18] is a discrete event simulator that focuses
on large scale network simulations. Its philosophy is to use
a higher level simulation model, that focuses on the algo-
rithmic interesting part of a simulation, which is the effects
of the execution of the algorithm as opposed to simulating
all the mechanisms that lead to this effect. Shawn uses ab-
stract and exchangeable models for lower level effects, like
communication and transmission models instead of simulat-
ing every such effect in the most realistic way. This technique
allows Shawn to run large scale experiments in a fraction of
the time that would take similar simulators for the same ex-
periments. By simulating the effects, Shawn allows the re-
searcher to easily prototype algorithms rapidly, by develop-
ing the higher level functionality. By exchanging the lower
level models, behaviour can be tested for different but similar
cases.

Shawn’s visualization features are plain. It mainly uses an
external tool called Vis [22] to provide visualizations of dis-
creet time instances of the simulation, including drawing of
nodes and edges. Each visualized instance is recorded to PNG
or PDF files. The nodes are the main component and repre-
sent the network processors. They have a customizable ap-
pearance in color, size and are generated automatically upon
execution. Edges represent the communication connections
between nodes and are not generated automatically.

2.3. OMNeT++

OMNeT++ [15, 21] is a discreet event simulator. Because
of its open architecture, OMNeT++ has been used not only
for network simulations but also for IT systems, queuing net-
works, hardware architectures and business processes. It pro-
vides an extensive GUI as well as command line options.
OMNeT++’s philosophy is to provide a highly distinctive
separation between the components of the simulation envi-
ronment, so that frameworks for a very broad spectrum of
applications can be introduced. Following this, OMNeT++
is being comprised by the simulation kernel, a compiler for
it’s own topology description language (NED) [20], GUI and
command line interfaces, vector plotting and scalars visual-
ization tools, model documentation tools and other miscella-
neous utilities.

NED is OMNeT++’s topology description language which
can describe parameterized regular structures, using for ex-
ample multiple or conditional connections. In this way, OM-
NeT++ can provide structures that are not characterized by
fixed interconnection or fixed number of elements. Using this
property, the system can avoid executing multiple simulation

runs for similar model topologies. NED also offers the flexi-
bility to describe the topology using parameters.

The system’s vector plotting and scalars visualization tools
consist of Plove[16] and Scalars[17]. Plove is a tool to plot
and analyze OMNeT++ output vector files. It provides plot-
ting specific options like drawing style and smoothing an can
output in various image format files. Scalars is a tool that also
uses OMNeT++ output scalar files to draw bar charts and x-y
plots. It also supports output in various image format files.

2.4. DAP/ADAPT

DAP/ADAPT [5, 6, 7] stands for Advanced Distributed Al-
gorithms Platform and Testbed. Its main goals are to provide
a platform which allows the user to develop algorithms in a
common and well known programming language, algorithms
which can be used in both simulation and real-world deploy-
ment, to support heterogeneous simulation environments and
to be open and extensible for new application domains. In
ADAPT every simulated process is actually implemented as
a “real”, in the operating system sense, process. Each process
communicates through the ADAPT client library to a central
core, called Engine that manages the simulation and provides
the relevant functionality.

The Engine performs the simulation processing itself. It
follows the discreet event simulation model thus its central
module is an event queue handler. All actions are transformed
to discreet events by the system and then fed to the queue
for handling. Actions can originate from the processes or the
GUI. The Engine also handles metrics and statistics.

The GUI that is provided with the system allows real time
monitoring of the simulations, and is a completely different
executable than the Engine itself, communicating with it us-
ing TCP/IP. This allows running the simulations in powerful
machines while monitoring from one or more less powerful
ones. ADAPT supports the creation of customized environ-
ments and complex simulation scenarios involving dynamic
events (e.g., node failures, obstruction of node movement,
etc.). Scenarios definitions in the mobility, obstacles and fail-
ures domain can be defined with time-specific actions that can
be replayed at any time in the exact same way. The same pro-
tocol is used for scenarios that come from the GUI or from
scenario files that can be loaded at any time.

3. ARCHITECTURE

Here we describe the architecture of WSNGE in greater
detail. Its main functional components are its graphical user
interface, the scripting engine and its internal simulation en-
gine. Figure 1 shows the general architecture design and the
interaction of the components. The choice of the optional ex-
ternal simulation engine or the integrated internal simulation
engine is up to the researcher, depending if one wants to use
WSNGE as merely a scenario editor, online manipulation and

monitoring tool for an external simulation framework (such
as Shawn) or as a complete simulation package.

/GUI\

Scrl pls |

Scenarlo Properties
(Nodes) (Obstacles)

Slmulatlon 7/ External ™
Engine _ Simulator /

Figure 1. The High-level Architecture

In the integrated internal simulation engine, the communi-
cation between nodes takes place using data buffers. The sim-
ulation engine uses discreet time units, which we call epochs,
to distinguish time slots where actions take place. Epochs
are essentially iterations (i.e., rounds), which are completed
when all active nodes in a network complete their respective
actions. These actions can be queue processing for receiving
data packets sent in the previous epoch, environment sensing
or timed events. Within each epoch, each node processes its
own data buffer queue until it is emptied. For each data packet
injection, and depending on the algorithm used, none, one
or more transmissions may occur from this node. The act of
transmitting is equivalent to filling one slot of the destination
node’s packets buffer with a data packet. Apart from packet
queue processing, events like sensing take place within each
node’s turn in the epoch. The simulator uses precalculated
communication graphs, while applying real-time failures cal-
culations, in order to speed up the simulation process.

Nodes attach themselves to predefined communication
models (depending on the physical layer we wish to sim-
ulate) during the construction of the communication graph.
Communication models include the Unit Disc Graph with
fixed radius R or more realistic irrational graphs with the ra-
dius R varying randomly from R; to R, where Ry < R;. In
the same way, each node can attach to a mobility model that
enables its location to be altered each epoch following the
model’s behavior. While the default model is a dummy static
model, other models can include random walk, circular or spi-
ral walks or predefined paths.

3.1. Internal data abstraction

Each node is equipped with a packet buffer which can fill
up with data packets that are either received by neighboring
nodes or injected by the user. Each data packet is generic and
can contain information about different functionality. For ex-
ample, localization packets contain information about the an-
chor’s location and localization algorithm while a geographic
routing packet may contain the destination location. Packets

Packets buffer

Packets buffer

Location
Statistics
Models
Capabilities

Location
Statistics
Models
Capabilities

Propertias
Properties

Figure 2. Two Interacting Simulated Entities

can be injected at any time using any of the available meth-
ods. Using the GUI it’s also possible to view the buffer of any
node at any given moment. The system does not distinguish
between different scenario types while running the simula-
tions. This means that at any time, just like in real testbeds,
different kind of packets can be moving through the network,
without them having to have any sort of compatibility be-
tween them, assuming that the software on the nodes knows
how to handle each of them. In practice, this approach pro-
vides the researcher with a valuable tool, namely the ability
to run multiple protocols on the same network at the same
time, in order to directly compare their performances. For
example, a number of different geographic routing protocols
which share the same source and destination can be executed
on the network and allowed to run step by step, allowing in
turn the researcher to examine the difference in their behav-
ior, without having to run the same simulation multiple times
for each protocol. This is particularly useful, when used with
the multiple views system (described in more details in the
next section), for demonstration and presentation purposes.

3.2. Obstacles and faults

We feel that an important part of wireless sensor network
simulation is shaping the network topology in a more natural
way by introducing obstacles. Obstacles are categorized in
two main categories. The first category is network areas that
contain few or no nodes at all. These areas act like obstacles
only when their border nodes have communication ranges
that do not allow them to transmit over the gap. The second
category is explicit obstacles that consist of line segments
and can form various shapes like lines, triangles or circles.
This type of obstacles do not allow communications to pass
through them, so any part of the communication graph that
crosses these lines segments is discarded. They also support
mobility and toggling. Another important feature of WSNGE
is the ability to fine tune the effect of faults both in commu-
nications and in other functions of the nodes, such as sensing
capabilities, power leakage or total failure. This is optional,

so algorithms can be tested in an ideally functioning environ-
ment, or in a more realistic one which includes the possibility
of failures. Failures are normally expressed by a probability
[0...1] for each action that represents the success rate. The
probability can be set in the beginning to a fixed value and
can change during the course of the simulation, in order to
simulate effects like gradually failing nodes.

4. THE GUI AS A MONITOR AND AN ON-
LINE INTERACTOR

A central goal of WSNGE is to provide the researcher a
way to interact with the experiment online and directly. All
operations are easy to control and initiate by simple combina-
tions of keyboard and/or the mouse. Having this in mind, the
system provides easy to use ways to manipulate the simulated
environment, both during the setup and while the simulation
is evolving. In fact, our system does not even distinguishes
these phases.

Defining the topology of the network is simple and can be
done with many different ways, depending on the situation.
Individual nodes can be inserted in specific positions by using
the mouse and keyboard shortcuts. If automatic deployment is
what the user requires, uniform deployment of a given num-
ber of nodes in the whole area or in a specified area (again
using intuitive GUI) is as easy as choosing the corresponding
action from a menu.

The GUI of our system can be used in conjunction with
the internal provided simulation engine or with external sim-
ulation solutions. In the later case, the GUI can be used as
a powerful topology and scenario editor for simulating ex-
periments in third party frameworks, like Shawn and Algo-
SenSim. The interface can be either on-line or off-line (us-
ing exported Shawn scripts). The functionality that is avail-
able for each external simulation engine depends on the en-
gine itself. Engines that do not support obstacles within their
simulation, obviously will not benefit from the obstacles pro-
vided by WSNGE. A certain level of compatibility must exist
between our platform and the external simulator, with spe-
cific elements being omitted when data cannot be exchanged
(for example, if the external simulation does not support ob-
stacles). The GUI provides a way to open multiple views of
the running network. Each view window can provide differ-
ent kind of information about the current network state, like
Gabriel planarized subgraphs or connection subgraphs. While
the main view is used for interaction, the other views can be
used to examine the behavior of protocols or to focus on spe-
cific data.

5. SCRIPTING

WSNGE provides more than the GUI method to perform
actions. Every single action can be performed in two more
ways. The first way is using the GUI command line, which

can accept command by command a description of each
action. For example, instead of inserting a node using the
mouse, the user can insert the command InsertAt 0.5
0.5 effectively inserting a node at the desired position. The
same goes for all functionality of the GUI. Commands can be
entered at any time during the simulation lifetime. The sec-
ond way is using script files. These are simple text files that
consist of commands and comments. The commands are ex-
ecuted sequentially until the end of file. An important func-
tionality option is that a command can execute an external
script file, both at the command line and within scripts, pro-
viding a way to better organize scripting. In this way, one
script file can be about deployment while a second one which
effectively can include the first one can be the simulation sce-
nario description and execution. Organization is up to the re-
searcher, so separating obstacles placement and node place-
ment for example in different files, so that each can be reused
separately, is perfectly possible. Because every aspect of the
network description and scenario can be defined using script
commands, exporting the situation status is being done us-
ing the scripting system itself. The system allows exporting
in script files, which consist of commands that when rerun,
will restore simulation state. This way, the researcher can edit
these files to fine tune the scenarios, or create similar scenar-
i0s.

6. CASE STUDY

To demonstrate the capabilities of the WSNGE, we now
show how easy and straightforward it is to simulate a wireless
sensor network comprised of 5000 nodes. We wish to simu-
late an indoor network where nodes will use a localization
algorithm to acquire positioning information and use a data
propagation protocol that utilizes the virtual coordinates.

In order to develop a new protocol, the researcher must de-
velop a function that implements the core functionality of the
algorithm as well as its supporting data structures (e.g., node
data structure) and link it to the GUI. Within the function,
packet sends can take place if needed, since the function has
access to the global data structures of the network. For our
case study, in order to develop a new localization algorithm,
the node data structure must be altered to include incoming
localization packets count, and the function must describe the
mechanism according to which localization packets will be
generated and sent when each node becomes an anchor, or
even before that (depending on the algorithm).

For the setup of the network we will use a simple script file,
namely network—-simple.txt (see listing 1). It creates a
network of 5000 nodes, with size 1 x 1 units, using a specific
random seed (making the process repeatable) and creates the
communication graph for the network using a communication
range of 0.1 units.

To initiate an algorithm, the researcher must inject the ap-

File Commands Network Obstacles Options Help

@ Detais
Locate | e |~ potrers

G Llocal |Test |

Selected| [Follow radi
e | [B]] et
SR e

MaxEpoch: |1 =

Figure 3. The Main Simulation Window

propriate packets or set up the conditions for the algorithm
to begin. Based on the controls of Figure 4, in order to ini-
tiate a Greedy geographic routing algorithm, the steps that
must be followed are: select the Geo tab, select Greedy algo-
rithm from the Geographic Routing drop down menu, select
the source node (by using the mouse to select the actual node
from the network), click source, select the destination (again
by selecting the actual node from the network), click destina-
tion and click init.

Listing 1. Script for simple network definition

seed 1024 // Change the random seed
insert 5000 // Position 5000 nodes uniformly
select all

radius 0.1 // Set communication range
discover // Create communication graph

At this moment, a greedy geographic routing packet has
been injected to the source node, that contains all the neces-
sary information to run the algorithm as well as some statis-
tics(source node, destination location, hop count). By click-
ing Next Epoch the algorithm will forward all relevant packets
and increase the epoch. By clicking Run Until Completion,
the algorithm will run until all packets have been delivered to
the destination or they fail to do so.

To run a localization algorithm, the researcher does not
need to inject packets, because a newly localized node will
decide, depending on the algorithm, to generate its own lo-
calization packets. The steps one must follow are: select Lo-
cal tab, select Greedy algorithm from the Localization Algo-
rithms drop down menu, select anchor node(s) (by selecting
the actual nodes from the network), and finally click Local-
ize. At this moment, by pressing Next Epoch or Run Until

Completion, the anchor nodes will generate the respective lo-
calization packets and broadcast them. Each newly localized
anchor node will repeat this procedure until a set number of
epochs is reached, all nodes are localized or there are no more
localization packets to send.

Locate | Hide

Geo Local] Test]

{* Details
" Buffers

Al
| Follow Neighbor

Selected [~ Follow radi

ﬂ Reset
Greedy -
All localized -

e
-

Mone

gl

Epoch: 11
Max Epoch: |1

Figure 4. Controls for Controlling the Simulation

In order to insert obstacle segments by using the GUI, the
researcher must follow those steps: use the menu system to
select Obstacles, clock insert single (for a single line seg-
ment) and drag the mouse to set the position of the obstacle.
Alternatively, the researcher can use the console by inputing:
obstacle 0.5 0.5 1 1 to create an obstacle between points
(0.5,0.5) and (1,1).

An alternative to setup the scenario using the GUI is to
define a more detailed script file. We here use two script
files, namely network-detailed. txt (seelisting 2) and
obstacles.txt (see listing 3) to describe some elements
of the network. These configuration file insert 3 nodes at spe-
cific locations that are being localized, effectively making
them the anchors for our localization algorithm testing. In the
second file, 3 obstacles are introduced at specific locations.
Finally, the first file resumes and creates the communication
graph for the final network. The above procedure results in
the network shown in Figure 3.

Listing 2. Script for detailed network definition

seed 1024 // Change the random seed

insert 5000 // Position 5000 nodes uniformly
insertat 0.1 0.45 // Position nodes

insertat 0.05 0.53 //at fixed points
insertat 0.15 0.53

localize 5000

localize 5001

localize 5002

select all

radius 0.1

script obstacles.txt //Obstacles script
discover //Create communication graph

Listing 3. Script for obstacle definition
obstacle 0 0.25 0.7 0.25

obstacle 1 0.5 0.3 0.5
obstacle 0 0.75 0.7 0.75

The above simulation was run step by step observing at
each step the newly localized nodes for the purpose of this
example. Alternatively, it could be run for a number of times,
while providing little or no feedback. Notice that the same ob-
stacles or network file can be reused separately, providing a
tool for testing algorithms in a very controlled configuration.
The above screenshot shows the network after 11 epochs run-
ning a simple greedy localization algorithm. In features two
displays, one showing the full communication graph while
the other shows a Gabriel Planarized subgraph.

Figure 5. Auxiliary Display showing a stage of localization

For demonstration purposes (e.g., in a classroom) we can
have multiple windows showing different information related
to the execution of the simulation. For example, Figure 3
shows a Gabriel Planarized subgraph of the network after 11
epochs running a simple greedy localization algorithm. The
full communication graph of the newly created anchors is dis-
played in Figure 5.

In fact, the user is not limited to controling the simula-
tor with one of the two methods; both can be combined. In
Figure 6 we continue the scenario by introducing 4 obsta-
cles (line segments) and extracted the Gabriel Planarized sub-
graph of the network to allow the use of a geographic routing
algorithm that only works on planar graphs.

In Figure 7 we can view an instance of the network that
runs 8 geographic routing protocols at the same time. In this
case, the protocols shared the same sink node. This is a simple
example of how easy it is to compare different algorithms’
behaviors on the exact same network, step by step.

Regarding the ability of WSNGE to simulate large in-
stances of wireless sensor networks, we have repeated the

@ Wireless Sensor Networks Sim - Merios Karagiannis - Univesity of Geneva - 2008

File Commands Network Obstacles Options Help
;.'.y“\
A iR
R oS "
V“’:’}F‘%‘.’é"‘%‘ T { ¥
‘.ﬂ»,qv‘ B NS A !"ii'“‘!"’v b '4 K
S PO A
St antlseg s
HH ‘,;.,4.' % NVAQKV
ST N
DG SO
IR =
‘\%sﬂ 5 '4‘5’.5%5)

e Rk
Pt S T
. & R XIS
L] BTN Al A i
A S RS
oo oS N
EOS SR AR D
St e S
R ‘;1_! 2./4'6'
A
»

4
G\
S F

i

S
:\ ‘*’é. A
"b

<y
A
L

ufgﬂ? <
OEEL
S

o, Tszrasrrsarst =
0, 75159514 ‘ ‘

5,
s
s
I
WAl
L 2

£,
¥

5

S

£ T
o0
= e
S S

e

BX

4

3000
27518 edges removed!

Mean connectivity: 22, 15 @

4

Figure 6. Gabriel subgraph of a network with obstacles

[Vi s TR S T e P

" [xo0,732725773877851 =
[0, 7815451420288
+[xpositon:o

»|_oew
Greedy -

Geostartia?
© Geoend: 199

bstaces:d
ted! 11868 edges removed!

ity:28025,834
]

ted! 11868 edges removed!

vity:27,514 @

4

Figure 7. Executing 8 instances of the routing protocol

above experiment with larger number of nodes. In Table 2
we include the execution time and memory usage of our sim-
ulator when executed on a Quad core Q6600 (2.6 GHz) with
64KB L1 cache, 8MB L2 cache and 4 GB of memory op-
erating Windows Vista. It is evident that even for extremely
large networks ([10%...10%]) the execution time is less than a
minute while the memory usage is less than 100 MB.

| Size (nodes) | Memory (KB) | Time (ms) | Mean Conn. |

1000 4948 514 28.844

2000 5968 1061 29.966

5000 9388 2449 30.7096
10000 14160 4712 27.5972
20000 23976 9781 24.6613
50000 57668 28096 30.38832
100000 107200 54304 25.26202

Table 2. Running times and Memory usage of WSNGE

7. CONCLUSIONS AND FUTURE WORK

We presented the design and implementation issues of a
novel software platform, that especially enables the simula-
tion of realistic application scenarios for wireless sensor net-
works. The primary goal of our simulator is to allow the pro-
tocol designer to interact with the simulation through a rich
graphical interface. We strongly believe that this is a valuable
tool that will help reduce the development cycle of applica-
tions for such networks.

Currently, we are in the process of integrating our simulator
with AlgoSenSim [1] and Shawn [10]. Furthermore, we plan
to refine the architecture of our framework, improve its gen-
erality and enrich the library of implemented modules with
more realistic models.

REFERENCES

[1] AlgoSenSim. URL.: http://tcs.unige.ch/doku.php/algosensim.

[2] The Georgia Tech Network Simulator (GTNetS). URL:
http://www.ece.gatech.edu/research/labs
/MANIACS/GTNetS/.

[3] OPNET modeller, OPNET technologies, inc.

http://www.opnet.com.

[4] Ioannis Chatzigiannakis, Athanasios Kinalis, Georgios My-
lonas, Sotiris Nikoletseas, Grigorios Prasinos, and Christos
Zaroliagis. Trails, a toolkit for efficient, realistic and evolving
models of mobility, faults and obstacles in wireless networks.
In 41th Annual ACM/IEEE Simulation Symposium (ANSS’08),
pages 23-32. ACM/IEEE, SCS, April 2008.

[5] Ioannis Chatzigiannakis, Athanasios Kinalis, A. Poulakidas,
G. Prasinos, and C. Zaroliagis. DAP: A generic platform for
the simulation of distributed algorithms. In 37th Annual Sim-
ulation Symposium (ANSS 2004), pages 166-177, 2004. IEEE
Press.

[6] Ioannis Chatzigiannakis, Christos Koninis, Grigorios Prasinos,
and Christos Zaroliagis. Distributed simulation of heteroge-
neous systems of small programmable objects and traditional
processors. In 6th ACM Workshop on Mobility Management
and Wireless Access (MOBIWAC 08), pages 133-140. ACM,
ACM, October 2008.

[7] Distributed algorithms platform homepage.
gr/LEP-DAP/.

http://rul. cti.

[8]

(91

(10]

(1]

[12]

[13]

[14]
[15]
[16]

(17]

(18]
[19]

(20]

[21]

(22]

(23]

D. Estrin, M. Handley, J. Heidemann, S. McCanne, and H. Yu.
Network visualization with Nam, the VINT network animator.
1IEEE Computer, 33(11):63-68, November 2000.

D. Kotz, C. Newport, R. Gray, J. Liu, Y. Yuan, and C. El-
liott. Experimental evaluation of wireless simulation assump-
tions. In Proceedings of the ACM/IEEE International Sympo-
sium on Modeling, Analysis and Simulation of Wireless and
Mobile Systems (MSWiM), 2004, pages 78-89, 2004.

Alexander Kroller, Dennis Pfisterer, Carsten Buschmann,
Sandor P. Fekete, and Stefan Fischer. Shawn: A new approach
to simulating wireless sensor networks. In Design, Analysis,
and Simulation of Distributed Systems (DASDO0S5), pages 117—
124, 2005.

S. Kurkowski, T. Camp, and M. Colagrosso. MANET simula-
tion studies: The incredibles. Mobile Computing and Commu-
nications Review, 9(4):50-61, 2006.

Mathieu Lacage and Thomas R. Henderson. Yet another net-
work simulator. In WNS2 ’06: Proceeding from the 2006 work-
shop on ns-2: the IP network simulator, page 12, New York,
NY, USA, 2006. ACM Press.

Koen Langendoen, Aline Baggio, and Otto Visser. Murphy
loves potatoes: experiences from a pilot sensor network de-
ployment in precision agriculture. In 20th International Par-
allel and Distributed Processing Symposium IPDPS, page 8,
2006.

The network simulator — ns2. http://www. isi. edu/nsnam/ns/.
The OMNeT++ simulation system. http://www.omnetpp.org/.

Plove vector plotting tool.

http://www.omnetpp.org/external/plove.php.

Scalars visualization tool. http://www.omnetpp.org/external/
scalars.php.

Shawn. http://shawn.sf.net.

Robert Szewczyk, Alan Mainwaring, Joseph Polastre, John
Anderson, and David Culler. An analysis of a large scale habi-
tat monitoring application. In 2nd international conference on
Embedded networked sensor systems SENSYS’04, pages 214—
226, New York, NY, USA, 2004. ACM.

Andrds Varga. Parameterized topologies for simulation pro-
grams. In Proceedings of the Western Multiconference on Sim-
ulation(WMC’98) Communication Networks and Distributed
Systems (CNDS’98), San Diego, CA, 1998.

Andrés Varga. The omnet++ discrete event simulation system.
In Proceedings of the European Simulation Multiconference
(ESM’2001), Prague, Czech Republic, June 2001.

Vis. http://shawnwiki.coalesenses.com/
index.php?title=Visualization.

Pei Zhang, Christopher M. Sadler, Stephen A. Lyon, and Mar-
garet Martonosi. Hardware design experiences in zebranet.
In 2nd international conference on Embedded networked sen-
sor systems SENSYS 04, pages 227-238, New York, NY, USA,
2004. ACM.

